This presentation describes improved adaptive and quasi adaptive filtering and control methods for adaptive optics. Adaptive compensation is needed in many adaptive optics applications because wind velocities and the strength of atmospheric turbulence can change rapidly, rendering any fixed-gain reconstruction algorithm far from optimal. The performance of the new methods is illustrated by application to recently developed simulations of high energy laser propagation through extended turbulence.
The presentation covers three advances over our previous publications on the use of adaptive filtering and control in adaptive optics. First, the adaptive loop is designed to use the closed-loop wavefront sensor vector as the input to the adaptive loop, as opposed to the estimate of the open-loop wavefront sensor vector used in previous publications on this subject. Second, it is demonstrated that a quasi adaptive loop, which updates gains periodically from short data sequences, often is nearly as effective as the fully adaptive loop, which updates gains at every time step. Finally, the adaptive optics simulations presented here are much more realistic than those in our previous publications because a recently developed adaptive optics simulation with high-fidelity wavefront propagation model and detailed sensor characteristics, including nonlinearities, is used.