Reducing complexity by implicit solvation models.

Benjamin Stamm
RWTH Aachen
Mathematics

The large majority of chemically interesting phenomena take place in liquid phase, where the environment (e.g., solvent) can play a crucial role in determining the structure, the properties and the dynamics of the system to be studied. In a practical context, accounting for all solvent molecules explicitly mat be infeasible due to the complexity of the underlying equations. A particular choice to reduce the complexity is to model the solvent to be a polarisable continuum medium. The resulting electrostatic energy contribution to the solvation energy can be computed by solving a Poisson-type interface problem.
To design a fast and efficient electrostatic solver is a delicate task as the electrostatic potential only decays slowly, i.e. with a rate 1/r, towards infinity. We refer to integral equations on the interface between the solvent and the solute in order to discretize the problem using a new domain decomposition paradigm for integral equations

Back to Workshop III: Collective Variables in Quantum Mechanics