We shall begin by discussing the following provocative speculation:
If the commensurator inside a simple Lie group G, of a Zariski dense discrete subgroup H⊂G, is dense, then H is a lattice
(hence, by Margulis, arithmetic). Even for infinitely generated Fucshian subgroups this seems open and hard. Then we discuss the anaytic approach towards the well known Margulis-Zimmer conjecture on commensurated subgroups of S-arithmetic groups. We describe results covering "most" of the "property (T) side" of the approach,
and discuss the difficulties on the amenability side.