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1. Executive Summary 
This whitepaper summarizes the progress and insights from the IPAM long program on             
“Machine Learning for Physics and the Physics of Learning”, held in Fall of 2019. 

During the last couple of decades advances in artificial intelligence and machine            
learning (ML) have revolutionized many application areas such as image recognition           
and language translation. The key of this success has been the design of algorithms              
that can extract complex patterns and highly non-trivial relationships from large amounts            
of data and abstract this information in the evaluation of new data. In the last few years                 
these tools and ideas have also been applied to, and in some cases revolutionized              
problems in fundamental sciences, where the discovery of patterns and hidden           
relationships can lead to the formulation of new general principles.  

This IPAM program focused on the opportunities and challenges in the application of             
ML tools in the physical sciences and if/how theoretical results in the physical sciences              
can help in the definition of new ML methods. The program hosted four workshops (WS)               
focusing on different aspects of the overarching topic:  

WS1 “From Passive to Active: Generative and Reinforcement Learning with Physics”           
focused on novel machine learning models for designing new molecules or materials,            
synthesis pathways, and optimal controls for dynamical systems. 
WS2 “Interpretable Learning in Physical Sciences” focused on the need to develop            
interpretable ML methods to understand the ML predictions in terms of physically            
meaningful quantities, in order to advance our understanding. 
WS3 “Validation and Guarantees in Learning Physical Models: from Patterns to           
Governing Equations to Laws of Nature” focused on learning equations, i.e.           
interpretable and extrapolatory models from data, on modeling dynamical systems and           
low-dimensional manifolds, on bounding errors and statistical aspects model selection. 
WS4 “Using Physical Insights for Machine Learning” focused on applying insights or            
models from physics to make progress in developing new ML models and algorithms, or              
to better understand why successful ML models such as stochastic gradient descent in             
deep learning frameworks work well. 

In addition to the workshops, we formed multiple working groups that met regularly             
during the program and tackled different subtopics. Subsequently, the state of the            
discussion and outcomes on these different subtopics are described. In particular, we            
discuss the open challenges that have been identified and that we as a group plan to                
continue to investigate in the future. 
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2. Physics-Constrained Machine Learning 
Introduction: Building known physical laws and constraints into ML models of physics            
can significantly improve the predictive accuracy and statistical efficiency of the model            
by removing physically implausible predictions from the search space. Two principal           
approaches to enforcing physics constraints are: (i) data augmentation (DA), and (ii)            
hard-coding the constraints in the ML model. DA is conceptually easy to do, but is               
statistically inefficient and does not preclude violation of the constraints. Building           
constraints into the ML structure ensures that the constraints hold exactly and reduces             
necessary training data, but requires designing specific structure into ML models or            
representations. 

Symmetries, invariances, and group actions Physical systems and processes often          
have symmetries. For example, the energy of an isolated molecule will be invariant to              
rotation and translation, i.e. to operations in the symmetry groups of 3D translations and              
rotations. In general symmetries can be linked to a conserved property. Enforcing            
symmetries in machine-learned models of physical systems exactly is often essential,           
e.g., in order to ensure stability of time-integrating with a machine-learned force field.             
Invariances can be enforced in ML models either by inserting invariant features into the              
learning structure (e.g., distances are invariant to translation and rotation) or by using             
operations inside the ML structure that induce the desired invariance (e.g. sum pooling             
induces permutation invariance). 

Equivariances and Convolutions Equivariance is a generalization of invariance. An          
equivariant function will commute with a symmetry group. Equivariant functions can           
retain properties in data that are discarded through invariance. For example, a function             
invariant to rotation will not be able to learn forces of a molecule, but one that is                 
equivariant can retain the necessary orientation information. There are multiple ways to            
include translation equivariance into a model, e.g., convolutional layers are translation           
equivariant since they apply a set of filters uniformly across a function space.             
Equivariance to rotation is less straightforward. Graphs and pairwise distances are           
rotation invariant, but separate the information of the system into two-body interactions            
which have to be recombined to get more complex interactions. Also, although these             
functions appear natural for molecules, they do not apply for other data structures.             
Spherical harmonics can be used as a tool to encode rotation equivariance while             
retaining the spatial information of the whole data structure. One method to derive             
features from data which are both rotation and translation equivariant is to use a              

3  



convolutional network where each filter is the product of a spherical harmonic and a              
radial function. 

Asymptotics Extrapolation to regimes outside the training data is difficult, especially for            
highly nonlinear ML models such as neural networks. To avoid predicting arbitrary,            
incorrect results, the extrapolation behavior of the ML structure must be considered. In             
physics we often have known asymptotics that can be explicitly built in. Examples: (1)              
When learning all-atom or coarse-grained molecular potentials, we can add a prior            
energy that ensures that the learned energy will go to infinity as particles approach each               
other. (2) For ground-state solutions of the Schrödinger equation the derivatives of the             
wavefunction is known to have certain limits as electrons approach nuclei or other             
electrons. In these limits, the probability of finding electrons also vanishes, i.e.            
hard-coding the correct asymptotics into trainable wavefunctions is important. 

Physics-derived learning problems Given that we want to solve a particular physics            
problem with machine learning, what is the “correct” optimality principle, or loss            
function? In supervised learning problems this is straightforward: we want to minize the             
difference between predictions and given labels, e.g., using mean square error or            
cross-entropy. In unsupervised machine learning, it is often less clear what the best             
objective is, but physics often helps defining the learning problem. Examples include: (i)             
Electronic structure problem: Rayleigh-Ritz variational principle, (ii) Molecular kinetics:         
variational approach of Markov processes (VAMP), (iii) Coarse-grained molecular         
potential: thermodynamic consistency, can be implemented by force matching or          
minimization of Kullback-Leibler divergence, (iv) Unbiased one-shot generation from a          
target density (e.g. Boltzmann): Variational energy loss. 

Work done at IPAM Investigating the effect of permutational symmetries on low            
dimensional embeddings and clustering of MD data; which invariances to enforce,           
depending on the system and data. (Kondor, Meila, Pan, Shlyakhtenko) 

Outlook Efficiently encoding physical constraints into ML structures is an active area of 
research. Open problems include Gauge invariance in lattice theories and efficiently 
encoding permutational antisymmetry in fermionic wavefunctions. 

3. Error bounds and Theory of Machine Learning 
Introduction: For physics models learned from data, it is often important to guarantee             
that model quantities lies within a certain error interval, at least to guarantee that the               
model obeys certain structural constraints. One way to obtain such guarantees is to             
analyze the model after it has been learned from data. Results in this area are still few.                 
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For trained multilayer neural networks, methods based on Rate Distortion theory solve            
the “credit assignment problem” of identifying the input components that have most            
influence on the current network prediction. For a learned clustering, one can obtain a              
prediction interval in the space of clusterings, by solving a convex optimization problem.  
 
In many situations, models fit on a given large training set will be applied to data                
distributions that differ from that of the original data. In this case, for optimal              
performance the model must be retrained with data from the new domain. This             
paradigm is known as transfer learning, and one fundamental question is how much             
new data is needed. Intuitively, this would depend on “how far” the new data distribution               
is from the old, and recently it has been understood rigorously how this distance must               
be defined. Estimating the distance in practical settings is possible in special            
circumstances, and it is a matter of current research. With this estimate, one would              
have a priori guarantees that the accuracy of the retrained predictor would match its              
accuracy on the original training distribution. 

Modeling the properties of over-parameterized neural networks: A pattern often          
observed in the current ML literature is the use of highly overparameterized models, in              
particular, Neural Networks (NN), which have become de facto "universal          
approximators". The current trend is often to construct a large, heuristically motivated,            
model—potentially including billions of parameters—and optimise it using stochastic 1st          
order optimisation (gradient descent) algorithms. While it is clear that more complex            
models are able to fit a larger variety of functions, it is somewhat surprising that simple                
optimisation methods are able to optimize these models while also avoiding overfitting.            
It is vitally important to understand the convergence of such methods on three different              
levels: (1) How fast are we reaching a global optimum (and why can we reach it)? (2)                 
What are the characteristics of the optima we find? (3) What are the tradeoffs between               
number of parameters, number of data points, and data dimensionality? 

Thermodynamic limit: Recent developments in the field of NNs theory study the            
“thermodynamic” limit as the number of machine learning model parameters growing to            
infinity. This has recently proven to be a successful idea that provides many new              
theoretical guarantees. In this framework, depending on the regularization         
(normalization) applied to the model, two different regimes arise: the mean field regime             
and linearized regime. These regimes allow us to study optimization dynamics and—in            
the linearized case—generalisation properties, e.g. the double descent phenomenon.         
Outstanding challenges include creating a unified framework for understanding the          
thermodynamic behavior of data-driven models, understanding the tradeoffs between         
models in the regimes listed above, connecting thermodynamic behavior to the           
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finite-sized case, and showing that the double descent phenomenon exists for a larger             
family of models. 

Navigating energy landscapes: Techniques such as the replica trick for certain           
classes of problems (spin glass, spiked tensor) precisely characterize the computational           
and statistical complexity and individuate phase transitions. Unfortunately, at the current           
level they are limited to a range of ‘toy’ models. 

Outlook: In the analysis of NN, the challenges are (1) to analyze theoretical models that               
replicate the complexity of actual NN training, and (2) the validity of the very concept of                
data distribution; in some settings it is not clear that the training set captures the real                
conditions when the model is used. There exists few but very powerful frameworks for              
giving guarantees for a given trained model, without making untestable statistical           
assumptions. Here, the challenge is to refine these frameworks in order to give             
informative guarantees (e.g. narrow prediction intervals) for more cases. 

4. Predictive Uncertainties and Domain of      
Applicability 
Introduction For ML predictions to be useful, whether for applications such as            
dynamics simulations and active learning or for human assessment and decision           
making, an accurate estimate of their reliability (“predictive uncertainty”) is required.           
Quantitative predictive uncertainties also aid in quantifying the generalizability and          
reproducibility of ML models, as well as for model selection and hyperparameter tuning.             
While in the experimental sciences it is established best practice to report            
measurements with error bars, these are not often included with ML predictions.            
However, predicting uncertainties in addition to prediction errors is crucial for scientific            
ML. 

Sources of uncertainty Predictive uncertainty can come from many sources, including           
data density and model limitations (for example, wrong functional form or missing            
features). For experimental data, noise is an additional strong source of uncertainty.            
Loss functions optimizing the L2 norm, which is commonplace in ML, correspond to             
assuming a homoskedastic Gaussian noise model. However, from experimental data          
and physical considerations it is known that such a noise model is often inappropriate,              
such situations call for more physically motivated choices of noise-models and           
loss-functions. Another distinction related to noise that is not often made is the one              
between confidence and predictive distributions. 
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Evaluation metrics It is currently unclear which evaluation metrics are best suited to             
validate predictive uncertainties. In ML it is common to use metrics such as log              
predictive density or continuous ranked probability score, but these often yield little            
additional signal beyond summary statistics of prediction errors (the latter, for example,            
is a generalization of mean absolute error).  

Datasets with observed distributions Almost all currently available benchmark and          
validation datasets do not contain information about the uncertainty of recorded           
observations, which precludes direct comparison of observed and predicted         
distributions. 

Domain of applicability An important aspect of predictive uncertainty is identifying the            
domain of applicability of a model (the input range where the model is valid, that is, has                 
low predictive uncertainty) to prevent uncontrolled errors, which may accumulate or lead            
to unphysical behavior in simulations. For example, an ML potential can perform well on              
a test set, but still have catastrophically large errors in unphysical regions of input              
space, such as configurations with very close atoms. Although the domain of            
applicability concept has a long history in cheminformatics, reliable identification of an            
ML model’s domain of applicability remains an open challenge.  

Locality of errors It is good practice to consider, in addition to the summary statistics,               
the distribution of prediction errors. However, global error metrics ignore the spatial            
dependence of prediction errors, that is, their dependency on the input space. In recent              
work, del Rosario et al. show that an acquisition function for active learning that focuses               
on the Pareto front can have higher global error than other acquisition functions while              
identifying better candidates, and Sutton et al. identify input space regions where model             
error is consistently and significantly lower than the average error over the whole             
dataset. The connection between spatially resolved prediction errors and predictive          
uncertainties is currently unexplored. 

Conformal prediction is an assumption-free confidence interval prediction framework.         
In the past, methods within this framework, such as full conformal prediction, required             
practitioners to train in a leave-one-out manner which makes interval estimation           
computationally infeasible. Split conformal prediction, a computationally feasible        
alternative, has the drawback of reducing the power of the estimated interval. Recent             
progresses in the field, e.g., cross conformal prediction or Jackknife+, are more            
powerful with less computational power while still providing reasonable guarantees. 
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Active learning is intimately tied to predictive uncertainties via acquisition functions,           
which control the exploration-exploitation trade-off and rely on accurate predictive          
uncertainties. Due to the challenge of small datasets (Section 8), ML models for energy              
surfaces depend on answers to questions such as how many and which data points              
should be generated to obtain a prescribed accuracy. Reliable predictive uncertainties           
would enable efficient on-the-fly sampling of new data points whenever a model enters             
part of configuration space with high uncertainty due to sparse training data.  

Work done at IPAM. A working group reviewed validation metrics for predictive            
uncertainties from ML and other fields such as the atmospheric sciences, set up             
recommendations for their validation, and benchmarked uncertainties with frequently         
used algorithms such as Gaussian process regression and random forests. Extensions           
of existing algorithms were proposed. 

Outlook. Increased awareness, analysis, benchmarking and improvement of predictive         
uncertainties of scientific ML models would lead to better understanding of model            
capability and applicability, increased acceptance of ML models in science and industry,            
as well as improved performance of related approaches such as active learning.            
Community efforts towards availability of benchmarking datasets with observed         
distributions (as opposed to observed values) would greatly aid in this. 

5. Accelerating Discovery with on-the-fly Learning 
Introduction: Progress in science is often constrained by practical considerations of           
experimental design and data acquisition. Especially where the parameter space is           
large, we are generally unable to run all the experiments needed to exhaustively explore              
and characterize many systems of interest in physical, engineering, and biological           
sciences. 

Typical machine learning studies start with a fixed, ideally exhaustive data set to which              
models are fit in a post hoc manner. Since this approach is often not tractable as data is                  
produced in a stream, we are increasingly interested in developing interactive methods            
that provide principled guidance for model construction and continual learning. 

Active Learning: Across many fields we have the common problem of selecting the             
most informative experiments to run given a strict budget in either data size or model               
complexity. Where experiments are constrained in total duration, we seek methods that            
are fast and may incorporate streaming data to make predictions in real time. Where              
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experiments are constrained in sample size, we seek steerable models that quantify            
uncertainty and guide principled design of experimental parameters. 

Within an active learning framework, data-driven modeling tools can lead to a more             
integrated, continuous, and virtuous cycle between data generation and learning that           
allow for improved performance from less data.  

Reinforcement Learning: Other fields such as control in dynamical systems or design            
of new molecules can be viewed as decision processes. Here the possible state-spaces             
much larger than the compact design-spaces that current actively learning techniques           
can handle. The framework of reinforcement learning offers tools that can enable us to              
tackle such problems. The power of reinforcement learning is that by implicitly            
factorising vast conditional probability spaces agents can be trained to make decisions            
about how to interact with their environment over extended series of events. The agent              
is driven by an expected future reward which is optimized to approximate the true              
reward as the agent is exposed to more training examples.  

Work Done at IPAM: The strengths and limitations of on-the-fly approaches were            
presented and discussed throughout the program. This led to the exploration of how             
such techniques might be applied across many disparate and interesting physical           
systems: 

Example system - Large scale ab-initio molecular dynamics: Atomistic simulations          
based on quantum theory provide a consistent description of both structural and            
electronic properties. These ab-initio simulations are extremely costly and currently          
consume large amounts of computing resources on large supercomputers. ML-based          
adaptive algorithms as well as on-the-fly definition of electronic response models may            
lead to substantial acceleration in the exploration of electronic excitations and optical            
properties, using approaches similar to those discussed in the section on Machine            
Learning of Energy Landscapes. 

Example system - Asymptotic safety in quantum gravity: The functional          
renormalization group represents one possible way to find a consistent and predictive            
theory for quantum gravity. Finding such a theory entails locating saddle points of a set               
of ordinary differential equations. Apart from incorporating prior physical knowledge no           
reliable methods exist to detect saddle points in higher dimensions. Reinforcement           
learning is a promising tool to reduce the number of differential equation evaluations,             
helping to find more accurate asymptotically safe theories of a gravitational field. 

Example system - Optimisation of molecular species: By deploying an active           
learning procedure over a learned representation of pi-conjugated peptides molecules          
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candidates for testing can be selected in a guided manner that balances the trade-off              
between exploration of undersampled regions and exploitation in high confidence          
regions of chemical space. The aim of using active learning to navigate this large              
chemical space is to be able to identify promising chemistries with optimal            
optoelectronic properties in fewer design iterations than other screening approaches. 

Outlook: On-the-fly and interactive learning offers a powerful suite of tools for scientists             
- particularly experimentalists. Whilst many of these ideas are well established the            
recent innovations and progress within Machine Learning have made application of           
these techniques to higher dimensional problems and larger data sets more feasible.            
Development of software and standardisation best practises is now needed to make            
these tools more accessible with the potential to enable acceleration across a wide             
range of domains. 

6. Machine Learning of Equations 
Introduction: Scientific inquiry often aims to produce new descriptions and          
understanding of regularities in nature. Historically, these regularities have been          
expressed in concise mathematical laws. However, modern, complex machine-learned         
models are often not expressible in such a compact way. Small mathematical            
expressions have significant advantages over black box models: they can be more            
easily analyzed, extrapolation and transferability can be more intuitively understood,          
validity and sensitivity to nuisance factors are more apparent. 

The automated discovery of equations is known mostly as “systems identification” in            
dynamical systems and “symbolic regression” in machine learning. Current approaches          
aim to use the power of modern computational techniques to produce concise and             
interpretable mathematical laws. There is a fundamental tension in equation discovery           
between descriptive capability and model complexity, and the goal is often to find             
parsimonious equations that balance accuracy and efficiency. These equations can          
then be used as surrogate models, e.g. to control dynamical systems or find novel              
materials.  

Review of techniques: Approaches so far have generally fallen into three categories            
based on how the search space of possible models is parameterized. One category is              
evolutionary algorithms, where promising equations are mixed together to produce new           
ones (Eureqa). Another set of approaches rely on sparse regression to select relevant             
terms in the equation from a large library of candidate terms (SINDy, MANDy, SISSO).              
A third class represents equations as parse trees (GVAE, SD-VAE, NG-MCTS).  
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Major challenges: In many systems, the most natural variables for concise equations            
are not obvious. Measurement noise and latent variables often further confound this            
choice. Promising directions include the use of time-delay coordinates to uncover latent            
variables, regularized or robust statistics to denoise and remove outliers, and           
simultaneously learning coordinate transforms and equations in a joint optimization.  

The optimal parameterization of the search space is another challenge. There is            
typically a tradeoff in terms of the generality/size of the search space and the ease of                
search. The parameterization can be informed by the known physics and symmetries of             
the system, but this is currently done ad-hoc and problem-specific. High-dimensional           
data often suffers from the curse of dimensionality, although tensor-based methods           
(e.g. MANDy) provide a promising framework. Further, the effect of various           
parameterization techniques on the overall success on a problem is poorly understood. 

Given the search space, significant challenges still remain in search/optimization over           
that space, including balancing accuracy and parsimony (especially in the presence of            
sensor noise), fitting of constants at arbitrary points in an expression, informing the             
search with known physics, and appropriate normalization of data.  

Lastly, convergence guarantees and bounds on the sufficient quality and quantity of            
data for a successful recovery are required to develop a more fundamental            
understanding of model identification. There are theoretical results for guaranteed          
recovery in sparse optimization, but these assumptions are often not met in practice.  

Work at IPAM: A powerful way to spur further research is the creation of Common Task                
Frameworks (CTFs): benchmark datasets abstracted from real-world problems with         
clear evaluation metrics. CTFs assist researchers and have been enormously          
successful in a variety of machine learning areas. A key focus of our work is to build                 
new CTFs for equation discovery. 

The set of previously developed empirical potentials for interatomic energy yields a rich             
set of scientifically useful equations. From the LAMMPS library, we identified 151            
many-body interaction equations. The equations are stratified by the incremental          
complexity of these interactions, from simple distance-based potentials like         
Lennard-Jones to complicated equations with angular and Coulombic terms. Additional          
complexity can be added by increasing the variety of chemical species and limiting the              
amount of information provided from the simulation. 

In addition, we are developing several open benchmark problems in dynamical systems            
theory that will incorporate issues that are relevant for modeling physical systems. We             
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are also developing a software package for SINDy that will be publically available and              
well-documented on Github. The goal is to promote the use of these methods for              
equation discovery in new scientific application areas. 

Outlook: Despite the limitations and outstanding challenges discussed, machine         
learning for equation discovery has already moved beyond toy problems and been            
applied to real science problems, including predicting adsorption energy and          
superconducting critical temperature, discovering reduced-order models for complex        
fluid flows, identifying structural models for building safety, distinguishing metals and           
insulators, and identifying stable perovskites. We believe that further methods          
development and further applications for novel discovery will proceed hand in hand. 

7. Data-driven Approaches for Complex Dynamical 
systems 
Introduction: Recovering information from and exerting control over dynamical         
systems is a problem that is present in several scientific fields, including but not limited               
to molecular dynamics, fluid dynamics, climate science, and social systems. The           
analysis of these systems is challenging due to high dimensionality, strong nonlinearity,            
difficulty in understanding the governing equations of the system, or even acquiring            
these equations. Despite these limitations, there are methods for gaining qualitative and            
quantitative information about their behavior. 

A traditional approach involves designing low-dimensional theoretical models. In this          
case, the models are often interpretable but do not necessarily provide an accurate             
description of the system of interest. Development of such a model also requires             
system-specific expertise, and thus limits transferability. Recent years have seen a           
rapid increase in the availability of data for dynamical systems, thanks to advances in              
experimental and simulation techniques as well as computing power. As a           
consequence, data-driven methods have in turn become the prevalent tool of choice for             
analyzing dynamical systems. 

Data-driven methods: Several fields have developed different modelling methods,         
most of them closely related to Markovian models, due to their effectiveness in             
describing the behavior of a complex dynamical system through simple analysis. Most            
of these approaches are based on the identification of a low-dimensional linear            
representation of the system that preserves dynamical and stationary information. This           
is done by approximating the Koopman operator, a linear, infinite-dimensional operator           
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that describes the dynamics of observables of the system. These methods are known             
as Markov models for the stochastic systems community. The advantage over classical            
dimensionality reduction techniques such as (kernel) PCA and manifold learning          
approaches such as diffusion maps is that Koopman-based methods explicitly take           
temporal information into account. 

The Koopman operator is the optimal linear operator that evolves state observables            
through time. The operator eigenvalues and eigenfunctions then describe mode          
frequencies and spatial modes respectively. The simplest algorithm to approximate a           
Koopman operator is the Time-Independent Component Analysis (TICA) algorithm,         
which was independently discovered in the fluid dynamics community as Dynamic Mode            
Decomposition (DMD). Many different extensions have been proposed, using         
reproducing kernel Hilbert space theory, tensors, or neural networks. These methods try            
to address the curse of dimensionality, i.e., the number of basis functions required for              
obtaining accurate estimates of eigenvalues, eigenfunctions, and modes grows         
exponentially with the system size. The hyperparameter search problem of choosing the            
right observables or the right kernel is often neglected. The recently variational            
approach for Markov processes (VAMP) defines a general ML loss function for linear             
approximations of dynamical systems that can be employed to find suitable           
hyperparameters. 

Molecular Dynamics Applications: Data-driven methods based on the Koopman         
operator, e.g. TICA or VAMPnet, are used to isolate slow modes in the dynamics of               
large molecules. In particular, a spectral gap in the approximated operator signifies a             
separation of time scales and eigenfunctions of slow timescales give the transition            
structure between metastable states in the stationary dynamics. In general, such           
spectral gaps might not exist and thus the truncated linear model might not be accurate.  

Fluid Dynamics Applications: PCA and DMD are commonly used for model reduction.            
Galerkin methods can reduce Navier-Stokes PDEs into a system of coupled ODEs, and             
similar methods are used to identify localized oscillatory flow features, such as            
large-scale atmospheric oscillations (e.g. El Nino Southern Oscillation). The Koopman          
operator and other methods, like geodesic Lagrangian Coherent Structures and local           
causal states, show promise in capturing more complicated localized features like           
coherent vortices and jet-core flow barriers in turbulent flows and hurricanes from            
climate data. Yet, because ground truth does not exist for these complicated features,             
method validation is an open challenge.  

Work done at IPAM: We started integrating the VAMP framework into dynamical            
systems analyses from fluid dynamics. Efforts at IPAM have led to the development of              
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community software tools in TICA/DMD/VAMP/system identification methods. This will         
help bridge gaps between different fields utilizing similar methods and organize           
approaches as dynamical systems analysis techniques advances in the future. 

Outlook: Incorporating symmetry constraints into machine learning methods has been          
shown to make problems more tractable and physical where equivariances and           
invariances are present. Similar techniques can be explicitly applied to studying other            
dynamical systems of interest using the methods discussed above. For example,           
imposing symmetry constraints with respect to continuous groups can be important for            
problems in fluid dynamics, and the analysis of complex networks can benefit from             
considering permutational symmetries in their structure (see section 2). 

In the end, all the aforementioned methods are developed and used by several different              
communities and a plethora of extensions and modifications have been proposed over            
the last years. Unifying these methods remains a challenging task. 

8. Machine Learning of Energy Landscapes 
Introduction: Accurate numerical simulation of molecules and materials is at the heart            
of physics, chemistry, and materials science. Still, established approaches are limited           
by some combination of accuracy, transferability, and computational cost. ML potentials           
of energy landscapes can enable the large-scale exploration of structure and dynamics            
by increasing the accuracy and reducing the computational cost of models. 

Recent progress was made with respect to (i) symmetries, such as curl-free kernels             
and covariance in features and models to increase the efficiency of learning, (ii) ML              
models that reproduce first-principles energies for small molecules and simple materials           
at a comparable accuracy, and (iii) applications to, among others, reactions, structure            
searches, phonon calculations, and spectroscopy. 

Outstanding issues. In this IPAM program, we identified the specific issues of (i) the              
limitations in computational speed of ML potentials, (ii) the lack of long-range            
interactions, (iii) the small size of dataset due to the cost of first-principles calculations,              
and (iv) the need to incorporate physical knowledge into the models to provide robust              
models the community can use and develop. 

Faster potentials. Current ML models, while faster than first-principles calculations, are           
still orders of magnitude slower than efficient but fixed-form empirical potentials, aimed            
at long simulations of large systems. To enable applications and community adoption of             
ML models as surrogate models for the exploration of energy landscapes, there is a              
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need for ML potentials that approach the speed of empirical potentials while retaining             
some of the accuracies of the underlying first-principles reference calculations. 

Long-range interactions. Many current ML representations describe atoms in their          
local environment, which limits the models to encode only short-range interactions.           
Extensions to long-range interactions that account for Coulomb forces, polarizability,          
and dispersion are of great importance for applications to ionic compounds and            
magnetic materials.  

Physical intuition and constraints. Incorporating physical knowledge and constraints         
directly into ML methods can reduce the data requirement and lead to more robust and               
efficient models. Also a direct connection between physics and ML can enable models             
that are more physically understandable. However, research on physics-inspired         
machine learning models is in its infancy and requires close collaborations between the             
communities. See “Physics-constrained Machine Learning” below. 

Robust models for community use. The robustness of a machine learning model is a              
crucial factor for its establishment and use by the community. Knowing and defining the              
limitations of models helps researchers understand appropriate use cases and reduces           
the number of failed simulations.  

Distributed community efforts. Currently, once a machine learning model is          
published, there is rarely the possibility to improve the model due to training and testing               
data not being public and the non-existence of a platform to easily share data.              
Developing a cyberinfrastructure to build and refine models by continuously          
incorporating new challenging structures would not only make the models more robust            
for the whole community but also reduce the number of redundant computations. These             
efforts benefit particularly from linking the communities of potential developers to           
applied math and computer scientists as done in this IPAM program to utilize prior              
domain knowledge. 

Small data challenge. ML potentials models are only as good as the data used in their                
development. Accurate models rely on expensive quantum mechanical datasets. The          
resulting small datasets can limit conventional ML methods. Kernel methods are           
non-parametric and are more data-efficient than, e.g., neural networks. Still, in practice,            
kernel methods work only in the low data regime because the size of the kernel scales                
quadratically with the number of data points. On the other hand, parametric models             
such as neural networks are more efficient but require large data sets.  
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The community needs more labeled datasets because the current datasets are either            
limited in scope or not sufficiently accurate enough for some applications. The use of              
GPUs is also still at its infancy in quantum software, with limited speed-up apart from               
some exceptions, while very established in biomolecular dynamics simulations. GPUs          
could help reduce the larger prefactor on more scalable methods like quantum Monte             
Carlo and in so doing obtain very accurate datasets.  

Work at IPAM. A working group at IPAM investigated many-body expansions for ML             
potentials and the possibility to learn such potentials using physically derived ML            
models by linear regression on many-body simulation data. This approach could enable            
ML potentials with a computational speed comparable to Lennard-Jones and          
Stillinger-Weber potentials and simplifies the incorporation of physical constraints. 

Outlook. The incorporation of physical domain knowledge and constraints, as well as            
extension to long-range interactions can provide efficient and robust ML potentials that            
enable large-scale structure searches and simulations of the dynamics of molecules           
and materials ranging from biomolecular systems to structural and functional          
compounds. The proposed community efforts for database creation, validation, and          
sharing as well as the cyberinfrastructure to continuously build, refine, and validate            
models would empower the broader community to utilize these ML potentials in a vast              
range of applications.  

9. Machine Learning for Coarse-Graining 
Introduction. Many interesting physical phenomena, such as cellular division or the           
origin of stars, have an enormous number of constituent particles, making direct            
simulation computationally infeasible. One way to study these physical phenomena with           
simulation is by coarse-graining. Coarse-graining reduces simulation complexity by         
grouping together similar particles, with the goal of retaining the important physical            
behavior present in the simulation. The original simulation, with the complete set of             
particles, is called fine-grained (FG) and the coarsened system is called coarse-grained            
(CG). 

Problem Statement. Coarse-graining is a two step process. First, one must choose            
how to group the fine-grained particles into CG large particles, called beads. This             
mapping is called “crisp” if particles are placed entirely into one coarse bead or “fuzzy” if                
particles are distributed among multiple beads. In either case, the mapping choice has             
more degrees of freedom than particle number, which is large. The second step in              
coarse-graining is choosing how to define the governing potential energy equation for            
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the CG system. This search for an effective CG potential requires knowledge of the              
mapping, although these two steps could be iterative. The selection of mapping and             
effective CG potential are optimization problems. The choice of the optimization           
objective and treatment of high-dimensionality are important challenges, especially the          
often neglected optimization of mapping. 

Machine Learning opportunities. ML enables new approaches to previously         
intractable challenges in the definition of CG models. For example, the effective CG             
potential that is thermodynamically consistent with the FG system must include           
multi-body terms among the CG beads due to the removal of degrees of freedom. This               
is true even if the FG potential includes only two-body interactions between particles. As              
the integral equations that define a thermodynamically consistent CG potential are not            
analytically tractable in practice, existing methods define an approximate CG energy by            
variationally optimizing the parameters of an ansatz functional energy form. It is difficult             
to design these functional forms as multi-body and thus most past work neglects this.              
This can now be solved with ML. NNs can naturally include multi-body terms and              
nonlinearities without the need of explicitly providing a functional form due to their             
universal function approximation power. Several participants in this IPAM program have           
developed CGnet, a specific NN architecture for the coarse-graining of biomolecules           
like protein systems. 

Work at IPAM. The choice of CG map has been rarely studied, partially due to the large                 
space of choices (e.g., linear vs non-linear, crisp vs fuzzy) and its high dimension. A               
core conclusion of our group is that it must be studied because the mapping sets               
fundamental limits on the quality of CG model. Current state-of-the-art is human            
intuition, although recent work presented at IPAM is pushing for systematic choices. In             
addition to the challenges of the mapping object (dimension, choice), there is no             
consensus on the objective to optimize when choosing the mapping. Ideas identified            
during the program include mapping entropy, force matched noise, force matched error            
and information content of CG beads. 

During this IPAM program, we started to address open challenges for coarse-graining            
by focusing on a highly simplified model system - a quadratic potential - for which at                
least two possible objective quantities can be computed in closed form. We also have              
good intuition for choice of CG maps. We studied the role of the noise and               
coarse-grained entropy in evaluating the quality of a CG map. The noise measures the              
extent to which the force on CG coordinates is under-specified by the CG coordinates              
themselves, and the coarse-grained entropy is simply the entropy of the CG distribution.             
We find that in the simplified models we studied, the noise and the CG entropy need not                 
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be correlated. We also find that minimizing noise while maximizing CG entropy is             
achieved by performing PCA on an ensemble of system configurations. 
 
Outlook. There are a number of open challenges relating to ML in coarse-graining. The              
first challenge is optimizing the CG mapping. In our model systems, we find no              
correlation between CG mapping entropy and noise, two possible mapping optimality           
measures. Are they truly independent measures of quality? Is there a best objective for              
optimizing CG mapping? The second challenge is maintaining the physics of the original             
system. The goal of coarse-graining is to keep relevant physics when coarsening, but             
can this be measured or quantified? The third challenge is developing transferable CG             
models. Developing effective CG potentials and mappings that can be used across            
multiple systems would drastically reduce the data and computation time required for            
developing new CG models. The last challenge is the incorporation of asymptotics into             
effective CG potentials. For example, the effective CG potential should go to infinity             
when approaching non-physical configurations, such as those with overlapping particles          
(See also “Physics-constrained Machine Learning”). 

10. Generative Models for Physical Systems 
Introduction. Generative models are capable of representing high dimensional,         
potentially conditional, distributions. These models can generate unseen samples         
according to a learned distribution reflecting the underlying data distribution. Prominent           
examples include generating realistic human faces, inpainting images, and generating          
text. In the context of physical systems, generative models have experienced success in             
producing molecular graphs, molecular structures, and lattice configurations.  

Given a set of physical objects that share a number of common properties, an instance               
of property values may not uniquely define an object. For example, a molecule is              
defined not only by its chemical composition but also by its 3D structure. To generate a                
valid molecular structure from chemical composition, a generative model must learn a            
distribution over the structure of molecules that share that composition. 

Challenges and approaches. While learning distributions is appealing, evaluating the          
similarity between the target and model distribution is challenging. Information theoretic           
approaches are the Kullback-Leibler divergence and/or the Jensen-Shannon divergence         
to evaluate the similarity of the distributions, while optimal transport theoretic methods            
give rise to the family of Wasserstein-p metrics. Existing generative models can be             
classified into three categories: exact likelihood methods, approximate likelihood         
methods, and likelihood-free methods. Prominent examples are Flows, Variational         
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Autoencoders (VAEs), and Generative Adversarial Networks (GANs), respectively. Flow         
models shape a candidate distribution (e.g. a normal distribution) to match a target             
distribution by applying a sequence of bijective transformations. VAEs use an           
encoder-decoder architecture with an approximate likelihood approach to parameterize         
a lower-dimensional latent distribution that can be purposed for generation. In case of             
GANs, two competing networks are adversarially trained. A generator network          
transforms a simple prior distribution into a target distribution, while a discriminator            
network attempts to distinguish real from generated data. If the two networks reach a              
Nash equilibrium, the data distribution is approximately represented by the generator. 

Work at IPAM. Generative models can be used in physical domains as proposal             
distributions (for instance to explore molecular conformations or generate lattice          
configurations) or to model inverse problems (such as suggesting new candidates for            
drug-like molecules or to reconstruct high-resolution molecular structures from         
low-resolution representations). 

One example of a generative model developed during the long program is a             
backmapping scheme. Molecular dynamics simulations can be prohibitively expensive         
for large systems, motivating coarse graining to effectively integrate out undesired           
degrees of freedom enabling access to more physical relevant time- and length-scales            
(cf. Section 9). However, recovering a temporally coherent super-resolution of the low            
resolution representation is a challenge. Temporal coherence and backmapping can be           
important to compute observables in the original space. We approach this problem by             
using GANs to generate high-resolution structures by incorporating information of past           
coarse and fine grained representations as inputs into both the generator and the             
discriminator.  

Another example of a generative model developed during the program are the so-called             
“equivariant normalizing flows”. A general theory for designing equivariant flows based           
on dynamical systems was developed and instantiated for toy systems.  

Outlook. A topic discussed during the program aims to incorporate physical symmetries            
directly into generative models, which can tremendously reduce the complexity of the            
learning problem. Many challenges nevertheless remain both in the implementation and           
numerical stability. Lastly, assessing the quality of these learned distributions remains           
difficult and necessities establishing new, robust evaluation metrics. 
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11. Outlook 
Introduction: Machine learning now plays several roles in physics, namely discovery,           
providing fast emulators/surrogate models, and understanding physical systems.        
Techniques like active learning, reinforcement learning and Bayesian optimization are          
used to accelerate the search for new materials and compounds. Data driven            
predictors, including kernel ridge regression and neural networks, are being used to            
approximate the results of costly physical calculations, achieving orders of magnitude           
speed-ups. In the physical sciences, quantitative prediction and explaining phenomena          
by compact equations and high level concepts go hand in hand; machine learning is              
being used to interpret and understand physical data, either from observation or from             
simulation, and to assist in the discovery of physical laws. Finally, as field matures, ML               
for physics must become production-ready and show that it can consistently beat the             
state of the art for real-world problems while maintaining efficiency and stability. 

Data production, benchmarks, infrastructure: Producing accurate benchmark       
datasets that are relevant to real physical challenges requires domain expertise, great            
care, and significant time. These datasets provide great value to a community by             
focusing effort and providing clear relative evaluation of methods. We believe more            
such datasets are needed across a variety of scientific areas, along with protocols for              
evaluation of existing methods. We started several dataset creation and benchmarking           
efforts in this program. Further, the community should better acknowledge and reward            
the scientists who diligently produce these valuable community artifacts. Lastly, along           
with the datasets themselves, the infrastructure for sharing the data, fairly comparing            
models, and making those models widely available needs further development. 

Physics informed ML Learning problems from Physics differ fundamentally from other           
applications of ML in industrial or IT scopes: Physics gives us guidance, or even              
constraints on defining the learning or optimization problem, on symmetries,          
conservation laws and asymptotic behavior that our predictions should obey.          
Incorporating physics constraints or intuition into ML models is a very active area of              
research, it can significantly simplify the learning problem as the optimization needs to             
search over a smaller set of functions than an uninformed blackbox ML model, and it is                
a great field for researchers from machine learning and physicists to interact. Concrete             
progress has been made in various application fields, such as ML for molecular             
sciences. There is also progress in general understanding, such as the deep            
mathematical relationships between invariances, equivariances, group theory and        
convolutions. Challenging open problems persist though, e.g. (1) For certain          
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symmetries we do not know an efficient representation that can scale to large problem              
instances, such as the antisymmetry constraint in fermionic wavefunctions. (2) While a            
lot of research has focused on building physical symmetries, conservation laws or            
intuition into inference models, doing this for generative models is much harder and             
relatively underexplored. 

Physical analysis methods for ML The use of analysis methods from physics for             
understanding and improving ML models is an active research area. We saw a variety              
of promising results during our program. However, there remains a significant gap            
between the high degree of complexity of models actually used in applications and the              
simplicity of the models that can be effectively analyzed with provable properties. We             
look forward to the continued narrowing of this gap and insights from the theoretical              
analysis directly affecting modelling choices for real problems.  

Reliability of methods: interpretability, convergence guarantees, uncertainty       
State-of-the-art ML tools already have important applications in Physics. However, they           
are still mostly seen as black boxes. Using these tools to advance the physical sciences               
in a more fundamental way still appears to be a big and promising challenge. There is                
an urgent need for more interpretable methods that can provide physical intuition and             
help in the formulation of new general principles (see, e.g., section “Machine Learning             
Equations”). Additionally, it would be important to be able to associate uncertainties to             
ML predictions, as it is customary when using classical approaches in Physics. A crucial              
challenge is to address the reliability of ML models (see, e.g., section “Predictive             
Uncertainties and Domain of Applicability”). One would like to have ML architectures            
able to make “good” prediction in the physical domain, however it is crucial to define               
what “good” means in this context. In order for ML surrogate models to be applied more                
broadly in the physical sciences we need to be able to trust their predictions. The               
quantification of uncertainties and the issue of reliability are active areas of research in              
ML, and the results need to be ported to the physical sciences. 

Surpassing the state of the art: While there are classical examples where physics             
ideas have entered ML (e.g. Boltzmann Machines), and also physicists have employed            
classical machine learning algorithms such as kernel methods and dense neural           
networks since decades, the field of machine learning for physics and the physics of              
learning has received a surge of interest with the recent breakthroughs in deep learning              
and is fast-growing. In almost every aspect of physics, chemistry and other domain             
sciences, new ML models are incorporated, extended or even redesigned. We are in a              
state where this field is very “excited” and moving rapidly. In many cases, even the very                
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fact that a modern ML model is “translated” into a domain science is considered              
progress and attracts attention.  

As the field matures, we must answer an important question for all of these application               
fields: can we actually surpass the previous state of the art in a fair comparison? For                
example, a key component in ML is universal function approximators, and there is no              
doubt that inserting ML components into traditional simulation or modeling workflows           
adds expressiveness. But can we beat classical state-of-the-art methods in terms of            
efficiency, as e.g. calling neural network packages to evaluate functions is often still             
much slower than simpler function representations that have been extensively optimized           
in code. Also, more flexible ML implementations of physics problems need to            
demonstrate stability for production purposes, e.g., can we run large-scale instances of            
simulators that contain novel ML components reliably? 

The goal of bringing ML into physics is to better understand the function of natural               
systems, discover new theories, and design new useful physical objects. ML in physics             
is just moving from proof of concept to accomplishing these grander goals and we look               
forward to greater impact and discoveries. 
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